
In the 
omponent, the integral in (5.14) is 
omputed using a 15-order Gaussian quadrature

formula, with the integral restri
ted to an inteval 5 times wider than the mosai
 width �.

The input parameters for Mosai
 simple are zmin, zmax, ymin, and ymax to de�ne the

surfa
e of the 
rystal in the Y-Z plane; mosai
 to give the FWHM of the mosai
 spread;

R0 to give the re
e
tivity at the Bragg angle, and Qx, Qy, and Qz to give the s
attering

ve
tor.

5.6.2 The 
rystal with anisotropi
 mosai


The 
omponent Mosai
 anisotropi
 is a modi�ed version of the Mosai
 simple 
om-

ponent, intended to repla
e the Mono
romator 
omponent from previous releases. It

restri
ts the s
attering ve
tor to be perpendi
ular to the 
rystal surfa
e, but extends

the Mosai
 simple 
omponent by allowing di�erent mosai
s in the horizontal and verti
al

dire
tion.

The 
ode is largely similar to that for Mosai
 simple, and the do
umentation for the

latter should be 
onsulted for details. The di�eren
es are mainly for two reasons:

� Some simpli�
ations have been done sin
e two of the 
omponents of the s
attering

ve
tor are known to be zero.

� The 
omputation of the Gaussian for the mosai
 is done done using di�erent mosai
s

for the two axes.

The input parameters for the 
omponent Mosai
 anisotropi
 are zmin, zmax, ymin,

and ymax to de�ne the size of the 
rystal (in meters); mosai
h and mosai
v to de�ne the

mosai
 (in minutes of ar
); r0 to de�ne the re
e
tivity (no unit); and Q to set the length

of the s
attering ve
tor (in

�

A

�1

).

5.6.3 The single 
rystal 
omponent

The physi
al model

The textbook expression for the s
attering 
ross-se
tion of a 
rystal is [10℄:

�

d�

d


�


oh:el:

= N

(2�)

3

V

0

X

�

Æ(� � �)jF

�

j

2

Here jF

�

j

2

is the stru
ture fa
tor, N is the number of unit 
ells, V

0

is the volume of an

individual unit 
ell, and � = k

i

� k

f

is the s
attering ve
tor. Æ(x) is a 3-dimensional

delta fun
tion in re
ipro
al spa
e, so for given in
oming wave ve
tor k

i

and latti
e ve
tor

� , only a single �nal wave ve
tor k

f

is allowed. In a real 
rystal, however, re
e
tions are

not perfe
tly sharp. Be
ause of imperfe
tion and �nite-size e�e
ts, there will be a small

region around � in re
ipro
al spa
e of possible s
attering ve
tors.

The Single 
rystal 
omponent simulates a 
rystal with a mosai
 spread � and a latti
e

plane spa
ing un
ertainty �d=d. In su
h 
rystals the re
e
tions will not be 
ompletely

sharp; there will be a small region around ea
h re
ipro
al latti
e point of the 
rystal that


ontains valid s
attering ve
tors.

We model the mosai
ity and �d=d of the 
rystal with 3-dimensional Gaussian fun
tions

in re
ipro
al spa
e (see �gure 5.10). Two of the axes of the Gaussian are perpendi
ular
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Figure 5.10: Ewald sphere 
onstru
tion for a single neutron showing the Gaussian broad-

ening of re
ipro
al latti
e points in their lo
al 
oordinate system.

to the re
ipro
al latti
e ve
tor � and model the mosai
ity. The third one is parallel to �

and models �d=d. We use an isotropi
 mosai
ity, so the two axes perpendi
ular to � are

of equal length �. We assume that the mosai
ity is small so that the possible dire
tions of

the s
attering ve
tor may be approximated with a Gaussian in re
tangular 
oordinates.

We now derive a quantitative expression for the s
attering 
ross-se
tion of the 
rystal

in the model. For this, we introdu
e a lo
al 
oordinate system for ea
h re
ipro
al latti
e

point � and use x for ve
tors written in lo
al 
oordinates. The origin is � , the �rst axis

is parallel to � and the other two axes are perpendi
ular to � . In the lo
al 
oordinate

system, the 3-dimensional Gaussian is given by

G(x

1

; x

2

; x

3

) =

1

(

p

2�)

3

1

�

1

�

2

�

3

e

�

1

2

(
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2

1

�

2
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+
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2

2

�

2
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+

x

2

3

�

2

3

)

(5.15)

The axes of the Gaussian are �

1

= ��d=d and �

2

= �

3

= �� . Here we used the assumption

that � is small, so that tan � � � (with � given in radians). By introdu
ing the diagonal

matrix

D =

0

�

1

2

�

2

1

0 0

0

1

2

�

2

2

0

0 0

1

2

�
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A

equation (5.15) 
an be written as

G(x) =

1

(

p

2�)

3

1

�

1

�

2

�

3

e

�x

T

Dx

(5.16)
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again with x = (x

1

; x

2

; x

3

) written in lo
al 
oordinates.

To get an expression in the 
oordinates of the re
ipro
al latti
e of the 
rystal, we

introdu
e a matrix U su
h that if y = (y

1

; y

2

; y

3

) are the global 
oordinates of a point in

the 
rystal re
ipro
al latti
e, then U(y + � ) are the 
oordinates in the lo
al 
oordinate

system for � . The matrix U is given by

U

T

= (û

1

; û

2

; û

3

);

where û

1

, û

2

, and û

3

are the axes of the lo
al 
oordinate system, written in the global


oordinates of the re
ipro
al latti
e. Thus û

1

= �=� , and û

2

and û

3

are unit ve
tors

perpendi
ular to û

1

and to ea
h other. The matrix U is unitarian, that is U

�1

= U

T

. The

translation between global and lo
al 
oordinates is

x = U(y + � ) y = U

T

x� �

The expression for the 3-dimensional Gaussian in global 
oordinates is

G(y) =

1

(

p

2�)

3

1

�

1

�

2

�

3

e

�(U(y+� ))

T

D(U(y+� ))

(5.17)

The elasti
 
oherent 
ross-se
tion is then given by

�

d�

d


�


oh:el:

= N

(2�)
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�

G(� � �)jF

�

j

2

(5.18)

The user must spe
ify a list of re
ipro
al latti
e ve
tors � to 
onsider along with their

stru
ture fa
tors jF

�

j

2

. The user must also spe
ify the 
oordinates (in dire
t spa
e) of the

unit 
ell axes a, b, and 
, from whi
h the re
ipro
al latti
e will be 
omputed.

In this version of the Single 
rystal 
omponent, no a

ount is taken of extin
tion (the

sample is assumed to be so thin that extin
tion is not important). A future version will

in
lude se
ondary extin
tion and multiple s
attering.

The algorithm

The overview of the algorithm used in the Single 
rystal 
omponent is as follows:

1. Che
k if the neutron interse
ts the 
rystal, and if so, sele
t at random a point of

s
attering inside the 
rystal.

2. Sear
h through a list of re
ipro
al latti
e points of interest, sele
ting those that are


lose enough to the Ewald sphere to have a non-vanishing s
attering probability.

3. Of the sele
ted re
ipro
al latti
e points, 
hoose one at random for this s
attering

event.

4. Sele
t an outgoing wave ve
tor k

f

from the interse
tion between the Ewald sphere

and the Gaussian ellipsoid.

5. Adjust the neutron weight to get the 
orre
t 
ross-se
tion in (5.18).

For point 1, sin
e no extin
tion is 
onsidered the s
attering point is 
hosen uniformly

on the potential 
ight path through the 
rystal. For point 2, the distan
e dist between a

re
ipro
al latti
e point and the Ewald sphere is 
onsidered small enough to allow s
attering

if it is less than �ve times the maximum axis of the Gaussian, dist � 5max(�

1

; �

2

; �

3

).
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Figure 5.11: The s
attering triangle in the single 
rystal.

Choosing the outgoing wave ve
tor The �nal wave ve
tor k

f

must lie on the in-

terse
tion between the Ewald sphere and the Gaussian ellipsoid. Sin
e � and �d=d are

assumed small, the interse
tion 
an be approximated with a plane tangential to the sphere,

see �gure 5.11. The tangential point is taken to lie on the line between the 
enter of the

Ewald sphere �k

i

and the re
ipro
al latti
e point � . Sin
e the radius of the Ewald sphere

is k

i

, this point is

o = (1� k

i

=�)�� �

where � = k

i

� � .

The equation for the plane is

P (t) = o+Bt; t 2 R

2

(5.19)

Here B = (b

1

; b

2

) is a 3�2 matrix with the two generators for the plane b

1

and b

2

. These

are (arbitrary) unit ve
tors in the plane, being perpendi
ular to ea
h other and to the

plane normal n = �=�.

Ea
h t de�nes a potential �nal wave ve
tor k

f

(t) = k

i

+ P (t). The value of the

3-dimensional Gaussian for this k

f

is

G(x(t)) =

1

(

p

2�)

3

1

�

1

�

2

�

3

e

�x(t)

T

Dx(t)

(5.20)

where x(t) = � � (k

i

� k

f

(t)) is given in lo
al 
oordinates for � . It 
an be shown that

equation (5.20) 
an be re-written as

G(x(t)) =

1

(

p

2�)

3

1

�

1

�

2

�

3

e

��

e

�(t�t

0

)

T

N(t�t

0

)

(5.21)
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where N = B

T

DB is a 2� 2 symmetri
 and positive de�nite matrix, t

0

= �N

�1

B

T

Do is

a 2-ve
tor, and � = �t

T

0

Nt

0

+o

T

Do is a real number. Note that this is a two-dimensional

Gaussian (not ne
essarily normalized) in t with 
enter t

0

and axis de�ned by N .

To 
hoose k

f

we sample t from the 2-dimensional Gaussian distribution (5.21). To do

this, we �rst 
onstru
t the Cholesky de
omposition of the matrix (

1

2

N

�1

). This gives a

2� 2 matrix L su
h that LL

T

=

1

2

N

�1

and is possible sin
e N is symmetri
 and positive

de�nite. It is given by

L =

 

p

�

11

0

�

12

p

�

11

q

�

22

�

�

2

12

�

11

!

where

1

2

N

�1

=

�

�

11

�

12

�

12

�

22

�

Now let g = (g

1

; g

2

) be two random numbers drawn form a Gaussian distribution with

mean 0 and standard deviation 1, and let t = Lg + t

0

. The probability of a parti
ular t

is then

P (t)dt =

1

2�

e

�

1

2

g

T

g

dg (5.22)

=

1

2�

1

detL

e

�

1

2

(L

�1

(t�t

0

))

T

(L

�1

(t�t

0

))

dt (5.23)

=

1

2�

1

detL

e

�(t�t

0

)

T

N(t�t

0

)

dt (5.24)

where we used that g = L

�1

(t� t

0

) so that dg =

1

detL

dt. This is just the normalized form

of (5.21). Finally we set k

0

f

= k

i

+ P (t) and k

f

= (k

i

=k

0

f

)k

0

f

to normalize the length of

k

f

to 
orre
t for the (small) error introdu
ed by approximating the Ewald sphere with a

plane.

Adjusting the neutron weight We now 
al
ulate the 
orre
t neutron weight adjust-

ment. The probability of a neutron with initial wave ve
tor k

i

that hits the 
rystal within

a small area A being s
attered with a wave ve
tor k

f

within a small solid angle d
 is

n

in

=n

out

, where n

in

and n

out

are the number of in
ident and s
attered neutrons, respe
-

tively. The de�nition of the 
ross-se
tion is

�

d�

d


�


oh:el:

= n

out

=�

in

where �

in

= n

in

=A is the in
oming 
ux. We 
an thus express the s
attering probability in

terms of the 
ross-se
tion as follows:

�(� ;k

f

) =

n

out

�

in

A
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1

A

�
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d


�


oh:el:

The volume of the 
rystal as seen by a beam with 
ross-se
tion A is `A = NV

0

where ` is

the path length of the beam all the way through the 
rystal. The probability of s
attering

in the physi
al model is thus

�(� ;k

f
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`
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where x = � � (k

i

� k

f

).

The Monte Carlo probability f(� ;k

f

) of the s
attering event taking pla
e in the sim-

ulation is the produ
t of the probability of sele
ting the parti
ular re
ipro
al latti
e point

� and the probability of sele
ting the parti
ular k

f

. Let a be the number of re
ipro
al

latti
e ve
tors 
loser than dist to the Ewald sphere. From (5.24) we then have

f(� ;k

f

)d
 =

1

a

1

2�

1

detL

e
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T
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dt (5.27)

=

1
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e
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T
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d
 (5.28)

where we used equations (5.20) and (5.21), as well as the fa
t that dt = k

2

i

d
.

We 
an now use equation (4.8) to get the 
orre
t weight adjustment:
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f
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(5.29)
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The implementation

The equations des
ribing the Single 
rystal simulation are quite 
omplex, and 
onsequently

the 
ode is fairly sizeable. Most of it is just the expansion of the ve
tor and matrix

equations in individual 
oordinates, and should thus be straightforward to follow.

The implementation pre-
omputes a lot of the ne
essary values in the INITIALIZE

se
tion. It is thus a
tually very eÆ
ient despite the 
omplexity. If the list of re
ipro
al

latti
e points is big, however, the sear
h through the list will be slow. The pre
omputed

data is stored in the stru
tures hkl info and in an array of hkl data stru
tures (one for

ea
h re
ipro
al latti
e point in the list). In addition, for every neutron event an array

of tau data is 
omputed with one element for ea
h re
ipro
al latti
e point 
lose to the

Ewald sphere. Ex
ept for the sear
h for possible � ve
tors, all 
omputations are done in

lo
al 
oordinates using the matrix U to do the ne
essary transformations.

The list of re
ipro
al latti
e points is spe
i�ed in an ASCII data �le. Ea
h line 
ontains

seven numbers, separated by white spa
e. The �rst three numbers are the (h; k; l) indi
es

of the re
ipro
al latti
e point, and the last number is the value of the stru
ture fa
tor

jF

�

j

2

, in barns. The middle three numbers are not used; they are nevertheless required

sin
e this makes the �le format 
ompatible with the output from the Crystallographi
a

program [11℄.

The input parameters for the 
omponents are xwidth, yheight, and zdepth to de�ne

the dimensions of the 
rystal in meters; delta d d and mosai
 to give the value of �d=d

(no unit) and � (in minutes of ar
); (ax; ay; az), (bx; by; bz), and (
x; 
y; 
z) to de�ne the

axes of the dire
t latti
e of the 
rystal (the sides of the unit 
ell) in units of

�

Angstr�m;

and re
e
tions, a string giving the name of the �le with the list of stru
ture fa
tors to


onsider.

5.6.4 The Mono
hromator

The 
omponent Mono
hromator is obsolete as from M
Stas version 1.2. Use the 
om-

ponent Mosai
 anisotropi
 instead.
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