In the component, the integral in (5.14) is computed using a 15-order Gaussian quadrature
formula, with the integral restricted to an inteval 5 times wider than the mosaic width o.

The input parameters for Mosaic_simple are zmin, zmaz, ymin, and ymax to define the
surface of the crystal in the Y-Z plane; mosaic to give the FWHM of the mosaic spread;
RO to give the reflectivity at the Bragg angle, and Qz, Qy, and Qz to give the scattering
vector.

5.6.2 The crystal with anisotropic mosaic

The component Mosaic_anisotropic is a modified version of the Mosaic_simple com-
ponent, intended to replace the Monocromator component from previous releases. It
restricts the scattering vector to be perpendicular to the crystal surface, but extends
the Mosaic_simple component by allowing different mosaics in the horizontal and vertical
direction.

The code is largely similar to that for Mosaic_simple, and the documentation for the
latter should be consulted for details. The differences are mainly for two reasons:

e Some simplifications have been done since two of the components of the scattering
vector are known to be zero.

e The computation of the Gaussian for the mosaic is done done using different mosaics
for the two axes.

The input parameters for the component Mosaic_anisotropic are zmin, zmaz, ymin,
and ymaz to define the size of the crystal (in meters); mosaich and mosaicv to define the
mosaic (in minutes of arc); r0 to define the reflectivity (no unit); and @ to set the length

of the scattering vector (in Afl).

5.6.3 The single crystal component
The physical model

The textbook expression for the scattering cross-section of a crystal is [10]:

da) (27)3 5
g — NN S — k)|
(dQ coh.el. Vo z.,-:

Here |F,|? is the structure factor, N is the number of unit cells, Vg is the volume of an
individual unit cell, and & = k; — ky is the scattering vector. d(x) is a 3-dimensional
delta function in reciprocal space, so for given incoming wave vector k; and lattice vector
7, only a single final wave vector k; is allowed. In a real crystal, however, reflections are
not perfectly sharp. Because of imperfection and finite-size effects, there will be a small
region around 7 in reciprocal space of possible scattering vectors.

The Single_crystal component simulates a crystal with a mosaic spread n and a lattice
plane spacing uncertainty Ad/d. In such crystals the reflections will not be completely
sharp; there will be a small region around each reciprocal lattice point of the crystal that
contains valid scattering vectors.

We model the mosaicity and Ad/d of the crystal with 3-dimensional Gaussian functions
in reciprocal space (see figure 5.10). Two of the axes of the Gaussian are perpendicular
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Figure 5.10: Ewald sphere construction for a single neutron showing the Gaussian broad-
ening of reciprocal lattice points in their local coordinate system.

to the reciprocal lattice vector 7 and model the mosaicity. The third one is parallel to 7
and models Ad/d. We use an isotropic mosaicity, so the two axes perpendicular to T are
of equal length . We assume that the mosaicity is small so that the possible directions of
the scattering vector may be approximated with a Gaussian in rectangular coordinates.

We now derive a quantitative expression for the scattering cross-section of the crystal
in the model. For this, we introduce a local coordinate system for each reciprocal lattice
point 7 and use & for vectors written in local coordinates. The origin is 7, the first axis
is parallel to 7 and the other two axes are perpendicular to 7. In the local coordinate
system, the 3-dimensional Gaussian is given by

1 1 —5(3+3+3)
e — 1 92 73 5.15
(V/2m)3 010203 (5:15)
The axes of the Gaussian are 0y = 7Ad/d and 02 = 03 = 7. Here we used the assumption

that n is small, so that tann ~ n (with n given in radians). By introducing the diagonal
matrix

G(Ila 2, £L'3) —

%a% 0 0
D=| 0 i0} 0
0 0 50'?2)
equation (5.15) can be written as
1 1
G(z) = e Dz (5.16)

(V2m)3 010203
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again with @ = (z1, x9, x3) written in local coordinates.

To get an expression in the coordinates of the reciprocal lattice of the crystal, we
introduce a matrix U such that if y = (y1,y2,y3) are the global coordinates of a point in
the crystal reciprocal lattice, then U(y + 7) are the coordinates in the local coordinate
system for 7. The matrix U is given by

UT = (,&17,&27,&3)7

where w1, 19, and 43 are the axes of the local coordinate system, written in the global
coordinates of the reciprocal lattice. Thus 4y = 7/7, and 42 and 43 are unit vectors
perpendicular to %; and to each other. The matrix U is unitarian, that is U~ = U". The
translation between global and local coordinates is

ze=U(y+7) y=Ule — 1
The expression for the 3-dimensional Gaussian in global coordinates is

1 1 T
- - —(U(y+7))" D(U(y+7))
) (v2m)3 710903 (5:17)

The elastic coherent cross-section is then given by

g ™ 3
(;LQ) - =N(2VO) S G(r — )| Fy (5.18)

T

The user must specify a list of reciprocal lattice vectors T to consider along with their
structure factors |Fi-|2. The user must also specify the coordinates (in direct space) of the
unit cell axes a, b, and ¢, from which the reciprocal lattice will be computed.

In this version of the Single_crystal component, no account is taken of extinction (the
sample is assumed to be so thin that extinction is not important). A future version will
include secondary extinction and multiple scattering.

The algorithm

The overview of the algorithm used in the Single_crystal component is as follows:

1. Check if the neutron intersects the crystal, and if so, select at random a point of
scattering inside the crystal.

2. Search through a list of reciprocal lattice points of interest, selecting those that are
close enough to the Ewald sphere to have a non-vanishing scattering probability.

3. Of the selected reciprocal lattice points, choose one at random for this scattering
event.

4. Select an outgoing wave vector kr from the intersection between the Ewald sphere
and the Gaussian ellipsoid.

5. Adjust the neutron weight to get the correct cross-section in (5.18).

For point 1, since no extinction is considered the scattering point is chosen uniformly
on the potential flight path through the crystal. For point 2, the distance dist between a
reciprocal lattice point and the Ewald sphere is considered small enough to allow scattering
if it is less than five times the maximum axis of the Gaussian, dist < 5 max(oy, 09, 03).
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Figure 5.11: The scattering triangle in the single crystal.

Choosing the outgoing wave vector The final wave vector kf must lie on the in-
tersection between the Ewald sphere and the Gaussian ellipsoid. Since n and Ad/d are
assumed small, the intersection can be approximated with a plane tangential to the sphere,
see figure 5.11. The tangential point is taken to lie on the line between the center of the
Ewald sphere —k; and the reciprocal lattice point 7. Since the radius of the Ewald sphere
is k;, this point is

o=(1-k/p)p—

where p = k; — 1.
The equation for the plane is

P(t)=o0+Bt, tcR? (5.19)

Here B = (by,bs) is a 3 X 2 matrix with the two generators for the plane by and by. These
are (arbitrary) unit vectors in the plane, being perpendicular to each other and to the
plane normal n = p/p.
Each t defines a potential final wave vector k¢(t) = k; + P(t). The value of the
3-dimensional Gaussian for this k¢ is
1 1

Gt = (V2m)3 010203 e P (5.20)

where (t) = 7 — (ki — k¢(t)) is given in local coordinates for 7. It can be shown that
equation (5.20) can be re-written as

1 1 T
_ —a_—(t—to)TN(t—to)
G(z(t)) Toomen (5.21)
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where N = BTDB is a 2 x 2 symmetric and positive definite matrix, tc = —N~'B" Do is
a 2-vector, and o = —th to+0" Do is a real number. Note that this is a two-dimensional
Gaussian (not necessarily normalized) in ¢ with center ¢, and axis defined by N.

To choose k¢ we sample ¢ from the 2-dimensional Gaussian distribution (5.21). To do
this, we first construct the Cholesky decomposition of the matrix (%N ~1). This gives a
2 x 2 matrix L such that LLT = %N ~! and is possible since N is symmetric and positive

definite. It is given by

A/ V11 0
L= ( 3 ) where %N‘l = < v M2 )

o 1 Z—ﬁ Vig V22

Now let g = (g1, 92) be two random numbers drawn form a Gaussian distribution with
mean 0 and standard deviation 1, and let ¢ = Lg + t3. The probability of a particular ¢
is then

Pt)dt = %6_%9%119 (5.22)

- %deltL6_%(L_1(t_t0))T(L_l(t_to))dt (5.23)

_ %ﬁef(tfto)TN(tfto)dt (5.24)

where we used that g = L~!(t —tg) so that dg = ﬁdt. This is just the normalized form

of (5.21). Finally we set ki = ki + P(t) and kt = (ki/k})k; to normalize the length of
k¢ to correct for the (small) error introduced by approximating the Ewald sphere with a
plane.

Adjusting the neutron weight We now calculate the correct neutron weight adjust-
ment. The probability of a neutron with initial wave vector k; that hits the crystal within
a small area A being scattered with a wave vector k¢ within a small solid angle d) is
Nin/Mout, Where nin and ney are the number of incident and scattered neutrons, respec-
tively. The definition of the cross-section is

do >
7Y =n t/¢in
(dQ coh.el. o

where ¢i, = nin /A is the incoming flux. We can thus express the scattering probability in
terms of the cross-section as follows:

Nout 1 <d0’>
(7, k) = =— |-
( f) ¢inA A \dQ coh.el.

The volume of the crystal as seen by a beam with cross-section A is /A = NV where /£ is
the path length of the beam all the way through the crystal. The probability of scattering
in the physical model is thus

/ do
(r, k) = — (- 2
(T’ f) NVO <dQ>c0h.el. (5 5)
/(273 1 1
- (7‘2') | Py |2 e @ D (5.26)
Vi (V2m)3 010203
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where & = 7 — (k; — kr).

The Monte Carlo probability f(7,k¢) of the scattering event taking place in the sim-
ulation is the product of the probability of selecting the particular reciprocal lattice point
7 and the probability of selecting the particular k¢. Let a be the number of reciprocal
lattice vectors closer than dist to the Ewald sphere. From (5.24) we then have

11 1 T
- = —(t—to) " N(t—to)
f(T, ke)dQ2 ~or det L dt (5.27)
11 k2 a —xTDe
- - _1 0 2
a271'detLe € d (5.28)

where we used equations (5.20) and (5.21), as well as the fact that dt = k?dQ.
We can now use equation (4.8) to get the correct weight adjustment:

~ TI(7, k)
m(T,ke) = T Rr) (5.29)

/
= IR
0

—Q

det L
spdet L e

(5.30)

k12 010203

The implementation

The equations describing the Single_crystal simulation are quite complex, and consequently
the code is fairly sizeable. Most of it is just the expansion of the vector and matrix
equations in individual coordinates, and should thus be straightforward to follow.

The implementation pre-computes a lot of the necessary values in the INITIALIZE
section. It is thus actually very efficient despite the complexity. If the list of reciprocal
lattice points is big, however, the search through the list will be slow. The precomputed
data is stored in the structures hkl_info and in an array of hkl data structures (one for
each reciprocal lattice point in the list). In addition, for every neutron event an array
of tau_data is computed with one element for each reciprocal lattice point close to the
Ewald sphere. Except for the search for possible T vectors, all computations are done in
local coordinates using the matrix U to do the necessary transformations.

The list of reciprocal lattice points is specified in an ASCII data file. Each line contains
seven numbers, separated by white space. The first three numbers are the (h, k,[) indices
of the reciprocal lattice point, and the last number is the value of the structure factor
|Fr)?, in barns. The middle three numbers are not used; they are nevertheless required
since this makes the file format compatible with the output from the Crystallographica
program [11].

The input parameters for the components are zwidth, yheight, and zdeflth to define
the dimensions of the crystal in meters; delta_d_d and mosaic to give the value of Ad/d
(no unit) and 7 (in minutes of arc); (az, ay, az), (bz, by, bz), and (cz, cy, cz) to define the
axes of the direct lattice of the crystal (the sides of the unit cell) in units of Angstrom;
and reflections, a string giving the name of the file with the list of structure factors to
consider.

5.6.4 The Monochromator

The component Monochromator is obsolete as from McStas version 1.2. Use the com-
ponent Mosaic_anisotropic instead.
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